首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4619篇
  免费   635篇
  国内免费   126篇
  2024年   16篇
  2023年   123篇
  2022年   100篇
  2021年   268篇
  2020年   275篇
  2019年   349篇
  2018年   228篇
  2017年   180篇
  2016年   168篇
  2015年   206篇
  2014年   298篇
  2013年   379篇
  2012年   196篇
  2011年   214篇
  2010年   152篇
  2009年   172篇
  2008年   175篇
  2007年   152篇
  2006年   150篇
  2005年   107篇
  2004年   119篇
  2003年   93篇
  2002年   91篇
  2001年   64篇
  2000年   68篇
  1999年   91篇
  1998年   81篇
  1997年   69篇
  1996年   61篇
  1995年   75篇
  1994年   65篇
  1993年   36篇
  1992年   61篇
  1991年   50篇
  1990年   47篇
  1989年   49篇
  1988年   37篇
  1987年   50篇
  1986年   21篇
  1985年   37篇
  1984年   29篇
  1983年   20篇
  1982年   27篇
  1981年   28篇
  1980年   20篇
  1979年   8篇
  1978年   15篇
  1976年   9篇
  1971年   10篇
  1970年   10篇
排序方式: 共有5380条查询结果,搜索用时 15 毫秒
41.
Our previous research has found that miRNA-22 can inhibit the occurrence of pyroptosis by targeting GSDMD and decrease the production and release of inflammatory factors. In consideration of the therapeutic effects of mesenchymal stem cells (MSCs), MSCs-EV were loaded with miRNA-22 (EV-miRNA-22) to investigate the inhibitory effect of EV-miRNA-22 on the inflammatory response in SCI in rats in this study. LPS/Nigericin (LPS/NG) was used to induce pyroptosis in rat microglia in vitro. Propidium iodide (PI) staining was performed to observe cell permeability, lactate dehydrogenase (LDH) release assay was adopted to detect cytotoxicity, flow cytometry was conducted to detect pyroptosis level, immunofluorescence (IF) staining was utilized to observe the expression level of GSDMD (a key protein of pyroptosis), Western blot was performed to detect the expression of key proteins. For animal experiments, the T10 spinal cord of rats was clamped by aneurysm clip to construct the SCI model. BBB score, somatosensory evoked potential (SEP) and motor evoked potential (MEP) were performed to detect nerve function. HE staining and Nissl staining were used to detect spinal cord histopathology and nerve cell damage. EV-miRNA-22 could inhibit the occurrence of pyroptosis in microglia, suppress the cell membrane pore opening, and inhibit the release of inflammatory factors and the expression of GSDMD. In addition, EV-miRNA-22 showed higher pyroptosis-inhibiting ability than EV. Consequently, EV-miRNA-22 could inhibit the nerve function injury after SCI in rats, inhibit the level of inflammatory factors in the tissue and the activation of microglia. In this study, we found that miRNA-22-loaded MSCs-EV (EV-miRNA-22) could cooperate with EV to inhibit inflammatory response and nerve function repair after SCI.  相似文献   
42.
Ischemic injury to the kidneys is a prevalent clinical problem, contributing importantly to chronic kidney disease. Yet, underlying molecular mechanisms are elusive. To address the possible role of autophagy, we engineered a novel strain of mice harboring a ubiquitously expressed CAG-RFP-EGFP-LC3 transgene. Using this tool, we examined the post-ischemic kidney and detailed the dynamics of renal tubular epithelial autophagy. In addition, we defined the role of MTOR in the resolution of autophagy during epithelial survival and kidney repair.  相似文献   
43.
The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3–C4 vertebral joint with each combination of five compressive force magnitudes (0–60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.  相似文献   
44.
Summary Alterations in the cytoskeleton were studied in the axoplasm of neurites at the tips of proximal stumps of transected chicken sciatic nerves. The studies were carried out using cryofixation with a nitrogen-cooled propane jet. The most immediate effect is the almost complete disassembly of axoplasmic microtubules. This consequently causes the axonal transport of membrane-bounded organelles to cease and results in an accumulation of mitochondria and vesicles of the smooth endoplasmic reticulum. The neurofilament network is partially disorganized. Neurofilaments become shorter and fragmented, and are linked by a large number of anastomosed cross-linkers. The neurofilaments become newly aligned to the axis of the axoplasm and are of normal length 48–72 h after the transsection. At this stage the newly formed neurofilament bundles are in close proximity to the anastomosed cisternae and profiles of the smooth endoplasmic reticulum. The axonal sprouts always show a normally organized cytoskeletal network. These studies support the idea that the rapid remodelling of the neurofilament network is apparently a local event, not dependent on the slow transport of cytoskeletal materials to the tip of the proximal stump. The repair of the degraded cytoskeleton may be in accordance with the function of the endoplasmic reticulum as Ca2+-sequestering membrane system, which may be involved in restoring the physiological conditions of the axoplasm.  相似文献   
45.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   
46.
Circular RNAs are a class of widespread and diverse endogenous RNAs that may regulate gene expression in various diseases, but their regulation and function in hypertensive renal injury remain unclear. In this study, we generated ribosomal‐depleted RNA sequencing data from normal mouse kidneys and from injured mouse kidneys induced by deoxycorticosterone acetate‐salt hypertension and identified at least 4900 circRNA candidates. A total of 124 of these circRNAs were differentially expressed between the normal and injured kidneys. Furthermore, we characterized one abundant circRNA, termed circNr1h4, which is derived from the Nr1h4 gene and significantly down‐regulated in the injured kidneys. RNA sequencing data and qPCR analysis also showed many microRNAs and mRNAs, including miR‐155‐5p and fatty acid reductase 1 (Far1), were differentially expressed between the normal and injured kidney and related to circNr1h4. In vitro, the silencing of circNr1h4 or overexpression of miR‐155‐5p significantly decreased Far1 levels and increased reactive oxygen species. Mechanistic investigations indicated that circNr1h4 acts as a competing endogenous RNA for miR‐155‐5p, leading to regulation of its target gene Far1. Our study provides novel insight into the molecular mechanisms underlying kidney injury in hypertension, which will be required to develop therapeutic strategies of targeting circRNAs for hypertensive kidney injury.  相似文献   
47.
48.
Examining molecular mechanisms involved in neuropathological conditions, such as ischemic stroke, can be difficult when using whole animal systems. As such, primary or ''neuronal-like'' cell culture systems are commonly utilized. While these systems are relatively easy to work with, and are useful model systems in which various functional outcomes (such as cell death) can be readily quantified, the examined outcomes and pathways in cultured immature neurons (such as excitotoxicity-mediated cell death pathways) are not necessarily the same as those observed in mature brain, or in intact tissue. Therefore, there is the need to develop models in which cellular mechanisms in mature neural tissue can be examined. We have developed an in vitro technique that can be used to investigate a variety of molecular pathways in intact nervous tissue. The technique described herein utilizes rat cortical tissue, but this technique can be adapted to use tissue from a variety of species (such as mouse, rabbit, guinea pig, and chicken) or brain regions (for example, hippocampus, striatum, etc.). Additionally, a variety of stimulations/treatments can be used (for example, excitotoxic, administration of inhibitors, etc.). In conclusion, the brain slice model described herein can be used to examine a variety of molecular mechanisms involved in excitotoxicity-mediated brain injury.  相似文献   
49.
50.
《Free radical research》2013,47(5):361-367
MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one) is a newly developed antioxidant which has been shown to reduce brain edema in cerebral ischemia through inhibition of the lipoxygenase pathway of arachidonic acid. However, its effect on myocardial reperfusion injury after prolonged ischemia has not yet been demonstrated. We compared the mode of the effect of MCI-186 and recombinant human CuZn superoxide dismutase (rh-SOD) in isolated perfused rat hearts subjected to 60-min ischemia followed by 60-min reperfusion. Left ventricular developed pressure (LVDP), necrotic area and the release of creatine phosphokinase (CPK) and endogenous CuZn superoxide dismutase (endoge-SOD) were measured to evaluate myocardial damage. The decrease in left coronary flow (CBF) was measured as an index of the damage of left coronary circulation. MCI-186 (17.5 mg/L) was perfused for 10 min in the MCI group and rh-SOD (70 mg/L) was perfused during the reperfusion period in the SOD group starting 5 min prior to reperfusion. The release patterns of CPK and endoge-SOD were analyzed to elucidate the difference in the mode of protection of MCI-186 and rh-SOD. The LVDP remained higher in both MCI and SOD groups than that of control (76 ± 1, 77 ± 2 and 69 ± 1% of preischemic value, respectively). The necrotic area was significantly attenuated in both MCI and SOD groups compared with that in the control group (16 ± 1,14 ± 1 and 32 ± 170, respectively, p<0.05). Total CPK release was lower in both MCI and SOD groups thfn in the control (78 ± 7, 100 ± 2 and 116 ± 4 × 103 units/g myocardium respectively). The decrease in CPK release was more marked in the MCI group than that in the SOD group (p<0.05). The reduction in CBF was significantly attenuated by the treatment with rh-SOD or MCI-186, but the effect was much higher in the SOD group than in the MCI group (69 ± 5, 58 ± 2, and 48 ± 2% in SOD, MCI and control groups, respectively). The release pattern of endoge-SOD was identical to that of CPK and thus this did not distinguish the mode of effect of MCI-186 from that of rh-SOD. These results indicate that MCI-186 reduces reperfusion injury in isolated perfused hearts with prolonged ischemia and the effect is more closely related to the reduction of myocyte damage than the preservation of the coronary circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号